首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11052篇
  免费   2139篇
  国内免费   315篇
电工技术   72篇
综合类   296篇
化学工业   4430篇
金属工艺   505篇
机械仪表   256篇
建筑科学   80篇
矿业工程   55篇
能源动力   773篇
轻工业   555篇
水利工程   11篇
石油天然气   137篇
武器工业   8篇
无线电   1500篇
一般工业技术   4397篇
冶金工业   187篇
原子能技术   74篇
自动化技术   170篇
  2024年   47篇
  2023年   403篇
  2022年   283篇
  2021年   689篇
  2020年   712篇
  2019年   684篇
  2018年   736篇
  2017年   756篇
  2016年   753篇
  2015年   744篇
  2014年   909篇
  2013年   1044篇
  2012年   829篇
  2011年   981篇
  2010年   655篇
  2009年   715篇
  2008年   634篇
  2007年   513篇
  2006年   439篇
  2005年   305篇
  2004年   167篇
  2003年   139篇
  2002年   100篇
  2001年   72篇
  2000年   65篇
  1999年   31篇
  1998年   31篇
  1997年   8篇
  1996年   13篇
  1995年   7篇
  1994年   9篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   6篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 691 毫秒
31.
In theory, the combination of inorganic materials and polymers may provide a synergistic performance for mixed‐matrix membranes (MMMs); however, the filler dispersion into the MMMs is a crucial technical parameter for obtaining compelling MMMs. The effect of the filler distribution on the gas separation performance of the MMMs based on Matrimid®‐PEG 200 and ZIF‐8 nanoparticles is demonstrated. The MMMs were prepared by two different membrane preparation procedures, namely, the traditional method and non‐dried metal‐organic framework (MOF) method. In CO2/CH4 binary mixtures, the MMMs were tested under fixed conditions and characterized by various methods. Finally, regardless of the MMM preparation procedure, the incorporation of 30 wt % ZIF‐8 nanoparticles allowed to increase the CO2 permeability in MMMs. The ZIF‐8 dispersion influenced significantly the separation factor.  相似文献   
32.
This study investigates the effect of two different iron compounds (zero-valent iron nanoparticle: nZVI and iron oxide nanoparticles: nIO) and pH on fermentative biohydrogen production from molasses-based distillery wastewater. The nZVI and nIO of optimum particle sizes of 50 nm and 55 nm respectively were synthesized and applied for fermentative hydrogen (H2) production. The addition of nIO & nZVI at (0.7 g/L, pH: 6) resulted in the highest H2 yield, H2 production rate, H2 content and COD reduction. Moreover, the kinetic parameters of H2 production potential (P) and H2 production rate (Rm) increased to 387 mL, and 22.2 mL/h, respectively for nZVI, these values were 363 mL and 21.8 mL/h for nIO. The results obtained indicated the positive effect of nZVI and nIO addition on enhanced fermentative H2 production. The addition of nZVI & nIO resulted in 71% and 69.4% enhancement in biohydrogen production respectively.  相似文献   
33.
We report the catalytic enhancement of hydrogen generation by 1) in situ Fe (0) formed and 2) nitroarenes substrates during Fe3O4@Pd core-shell nanoparticles catalyzed tandem reaction. The active hydrogen species are generated in Pd shell, which either combine to form H2 gas or take part in relatively faster nitroarene reduction reaction. The rate of hydrogen generation from ammonia borane is dependent on the nitroarene substrate and is higher when 4-nitrophenol is used. This is due to the difference in ammonia borane adsorption on the surface of the catalyst. During recyclability, the H2 generation rate of 2 wt% Pd loaded samples is higher than other compositions. Such an enhancement has been attributed to the formation of Fe (0) via γ-FeOOH mediated by Pd species, presumably through Pd(OH)2. The electronic connection between Fe and Pd interface is thus shown to play an important role in the catalytic enhancement of the tandem reaction.  相似文献   
34.
In this paper, Pt nanoparticles (Pt NPs) deposited hybrid carbon support is prepared by modifying double-layered hollow carbon spheres(DLHCs)with poly(3,4-ethylenedioxythiophene) (PEDOT) and used as anode catalyst of methanol oxidation. The structure of nanocomposites is characterized by SEM, TEM, FT-IR, XRD and XPS, confirming the greatly enhanced synergistic effect between the PEDOT and DLHCs, and illustrating the uniform distribution of Pt NPs on the PEDOT/DLHCs composite surface with a small particle size (~2.63 nm). Cyclic voltammetry, chronoamperometry and impedance spectroscopy applied to determine the electrocatalytic activity of catalysts, it is found that the synthesized PEDOT/DLHCs/Pt possesses excellent characteristics such as large electrochemically active surface area and high mass activity of 59.45 m2 g−1 and 807 mA mg−1 in 0.5 M H2SO4 containing 1 M methanol solution, which is almost 1.24 and 2.8 times greater than those of commercial Pt/C, and the catalyst exhibits superior stability after 500 durability cycles. The enhanced electrocatalytic behavior can be ascribed to the excellent electronic conductivity of PEDOT-modified DLHCs and the strong binding of PEDOT/DLHCs to Pt NPs, suggesting that the PEDOT/DLHCs/Pt is a promising electrocatalyst for direct methanol fuel cell.  相似文献   
35.
《Ceramics International》2022,48(9):12537-12548
Enhancing the electrical conductivity of electrode materials via a cationic substitution strategy was recognized as an effective way of improving the electrochemical performance of Li-ion batteries. Thus, LixCa1-xFe2O4 nanoparticles were synthesized via a facile inexpensive process at low temperature. XRD peaks refer to the formation of an orthorhombic structure with the Pnma space group. HR-TEM investigations reveal orthorhombic-like shape for pure CaFe2O4, nanoplatelet-like morphology for Li0.05Ca0.95Fe2O4 and irregular distorted crystals for Li0.1Ca0.9Fe2O4. Voids and pores in Li-doped CaFe2O4 were confirmed by FESEM and BET measurements. XPS spectra of O1s prove that Li-doped CaFe2O4 have higher conductivity due to the created lattice defects and oxygen species. Li-doped CaFe2O4 anodes exhibit great improvement in their initial discharge capacities ~1219 and 1606 mAhg?1 upon substitution of Ca with 5% and 10% Li, respectively. Furthermore, 10% Li-doped CaFe2O4 anode displays the highest Li-ions diffusion coefficient and exchange current density due to the enhanced Li+ ions mobility. Moreover, the DC activation energies for the LixCa1-xFe2O4 nanoparticles decreased with increasing Li content.  相似文献   
36.
Photothermal therapy (PTT) mediated by nanomaterial has become an attractive tumor treatment method due to its obvious advantages. Among various nanomaterials, melanin-like nanoparticles with nature biocompatibility and photothermal conversion properties have attracted more and more attention. Melanin is a natural biological macromolecule widely distributed in the body and displays many fascinating physicochemical properties such as excellent biocompatibility and prominent photothermal conversion ability. Due to the similar properties, Melanin-like nanoparticles have been extensively studied and become promising candidates for clinical application. In this review, we give a comprehensive introduction to the recent advancements of melanin-like nanoparticles in the field of photothermal therapy in the past decade. In this review, the synthesis pathway, internal mechanism and basic physical and chemical properties of melanin-like nanomaterials are systematically classified and evaluated. It also summarizes the application of melanin-like nanoparticles in bioimaging and tumor photothermal therapy (PTT)in detail and discussed the challenges they faced in clinical translation rationally. Overall, melanin-like nanoparticles still have significant room for development in the field of biomedicine and are expected to applied in clinical PTT in the future.  相似文献   
37.
To improve five-year survival rate of oral squamous cell carcinoma (OSCC), the development of a novel composite material of black phosphorus nanosheets (BPNSs) and gold nanoparticles (AuNPs) for tumor treatment was carried out. The purpose of this study is to evaluate the cytostatic effects of BPNSs, AuNPs loaded with cisplatin (CDDP) on human tongue squamous cell carcinoma cells lines (SCC-9), and 7,12-dimethylbenz anthracene induced cheek squamous cell carcinoma was validated in golden hamsters animal models. The results showed that BPNSs could efficiently inhibit the metastasis and growth of OSCC compared with CDDP and AuNPs. And a combination composite of AuNPs–BPNSs loaded with CDDP could more effectively inhibit the metastasis and growth of OSCC, which might be due to the high drug-loading capacity, excellent photothermal properties and the combination of photodynamic and photothermal therapy of BPNSs and AuNPs, as well as the synergistic effects of AuNPs, BPNSs and CDDP.  相似文献   
38.
Photothermal-chemotherapeutic nanoparticles (NPs) are attracting increasing attention and becoming more widely used for cancer therapy in the clinic due to their noninvasiveness, notable tissue penetration abilities, and low systemic adverse effects. However, functional ligands are conventionally modified onto photothermal NPs to well stabilize the inorganic particles suffering from complex chemical modifications, low productivity, and batch-to-batch inconsistencies, and thus significantly restricting their clinical applications. Herein, flash nanoprecipitation (FNP) is taken advantage of to afford rapid and uniform mixing for generating local supersaturated CuS clusters for small and highly stable CuS NPs effectively stabilized by polyacrylic acid through a continuous strategy. It greatly reduces the complexity for CuS NPs synthesis and functionalization in a facile intensified mixing process. These as-synthesized particles are high-drug loading, scalable, and most importantly, it is easy to control their sizes and charges through external conditions. Toxicity and tumor inhibition experiments confirm the high cell toxicity and good suppression of tumor growth under near-infrared irradiation indicating a promising prospect of FNP in the large-scale and continuous yielding of highly stable and high-performing photothermal-chemotherapeutic NPs for cancer therapy.  相似文献   
39.
Nerve growth conduits are designed to support and promote axon regeneration following nerve injuries. Multifunctionalized conduits with combined physical and chemical cues, are a promising avenue aimed at overcoming current therapeutic barriers. However, the efficacious assembly of conduits that promote neuronal growth remains a challenge. Here, a biomimetic regenerative gel is developed, that integrates physical and chemical cues in a biocompatible “one pot reaction” strategy. The collagen gel is enriched with magnetic nanoparticles coated with nerve growth factor (NGF). Then, through a remote magnetic actuation, highly aligned fibrillar gel structure embedded with anisotropically distributed coated nanoparticles, combining multiple regenerating strategies, is obtained. The effects of the multifunctional gels are examined in vitro, and in vivo in a 10-mm rat sciatic nerve injury model. The magneto-based therapeutic conduits demonstrate oriented and directed axonal growth, and improve nerve regeneration in vivo. The study of multifunctional guidance scaffolds that can be implemented efficiently and remotely provides the foundation to a novel therapeutic approach to overcome current medical obstacles for nerve injuries.  相似文献   
40.
Copper catalysts are widely studied for the electroreduction of carbon dioxide (CO2) to value-added hydrocarbon products. Controlling the surface composition of copper nanomaterials may provide the electronic and structural properties necessary for carbon-carbon coupling, thus increasing the Faradaic efficiency (FE) towards ethylene and other multi-carbon (C2+) products. Synthesis and catalytic study of silver-coated copper nanoparticles (Cu@Ag NPs) for the reduction of CO2 are presented. Bimetallic CuAg NPs are typically difficult to produce due to the bulk immiscibility between these two metals. Slow injection of the silver precursor, concentrations of organic capping agents, and gas environment proved critical to control the size and metal distribution of the Cu@Ag NPs. The optimized Cu@Ag electrocatalyst exhibited a very low onset cell potential of −2.25 V for ethylene formation, reaching a FE towards C2+ products (FEC2+) of 43% at −2.50 V, which is 1.0 V lower than a reference Cu catalyst to reach a similar FEC2+. The high ethylene formation at low potentials is attributed to enhanced C C coupling on the Ag enriched shell of the Cu@Ag electrocatalysts. This study offers a new catalyst design towards increasing the efficiency for the electroreduction of CO2 to value-added chemicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号